Tracklet Descriptors for Action Modeling and Video Analysis
نویسندگان
چکیده
We present spatio-temporal feature descriptors that can be inferred from video and used as building blocks in action recognition systems. They capture the evolution of “elementary action elements” under a set of assumptions on the image-formation model and are designed to be insensitive to nuisance variability (absolute position, contrast), while retaining discriminative statistics due to the fine-scale motion and the local shape in compact regions of the image. Despite their simplicity, these descriptors, used in conjunction with basic classifiers, attain state of the art performance in the recognition of actions in benchmark datasets.
منابع مشابه
Recognition of Visual Events using Spatio-Temporal Information of the Video Signal
Recognition of visual events as a video analysis task has become popular in machine learning community. While the traditional approaches for detection of video events have been used for a long time, the recently evolved deep learning based methods have revolutionized this area. They have enabled event recognition systems to achieve detection rates which were not reachable by traditional approac...
متن کاملAction Change Detection in Video Based on HOG
Background and Objectives: Action recognition, as the processes of labeling an unknown action of a query video, is a challenging problem, due to the event complexity, variations in imaging conditions, and intra- and inter-individual action-variability. A number of solutions proposed to solve action recognition problem. Many of these frameworks suppose that each video sequence includes only one ...
متن کاملImprovement of Accuracy for Human Action Recognition by Histogram of Changing Points and Average Speed Descriptors
Human action recognition has become an important research topic in computer vision area recently due to many applications in the real world, such as video surveillance, video retrieval, video analysis, and human-computer interaction. The goal of this paper is to evaluate descriptors which have recently been used in action recognition, namely Histogram of Oriented Gradient (HOG) and Histogram of...
متن کاملCross-Granularity Graph Inference for Semantic Video Object Segmentation
We address semantic video object segmentation via a novel cross-granularity hierarchical graphical model to integrate tracklet and object proposal reasoning with superpixel labeling. Tracklet characterizes varying spatial-temporal relations of video object which, however, quite often suffers from sporadic local outliers. In order to acquire highquality tracklets, we propose a transductive infer...
متن کاملSemantic Analysis for Crowded Scenes Based on Non-Parametric Tracklet Clustering
In this paper we address the problem of semantic analysis of structured/unstructured crowded video scenes. Our proposed approach relies on tracklets for motion representation. Each extracted tracklet is abstracted as a directed line segment, and a novel tracklet similarity measure is formulated based on line geometry. For analysis, we apply non-parametric clustering on the extracted tracklets. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010